If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+40x-100=0
a = 1; b = 40; c = -100;
Δ = b2-4ac
Δ = 402-4·1·(-100)
Δ = 2000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2000}=\sqrt{400*5}=\sqrt{400}*\sqrt{5}=20\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-20\sqrt{5}}{2*1}=\frac{-40-20\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+20\sqrt{5}}{2*1}=\frac{-40+20\sqrt{5}}{2} $
| 3+3=-12-2x | | (x+8)^4=21^2 | | k+35=65 | | X=5/8t | | 12x/5=15 | | -2r-13=4r+7r | | 3(1-9)+22a=2(2a-9)-15 | | 5=22/(1+r) | | 3(1-9)=2(2a-9)-15 | | -5j+-3=87+5j | | -3a+12-6a=-9 | | 3=l2-1l+2 | | k+47/9=9 | | -16=-6+x | | –3(–2q+3)= | | 7(x–4)2–18=10 | | 180=20+7x+7+90 | | 0.08x0.4x=2.12 | | a-(a.3)=779 | | w-2.8=9.71 | | x/10-248=2 | | x/5+4=19 | | 9c=4.5 | | 3/5(t+17)=-3(3-t) | | 8(5^2x-3)=48 | | 216=64+8x | | 11+r=29 | | (n+8)+(n+12)=62n | | -3(-7-x)=1/3(x+39 | | 3x^2+3=229 | | 4(8x-16)=32 | | 14x^2-12x=135 |